
Science & Military 1/2020

45

FUNDAMENTALS OF STATIC MALWARE ANALYSIS: PRINCIPLES,
METHODS AND TOOLS

Andrej FEDÁK, Jozef ŠTULRAJTER

Abstract: Nowadays, the security of all systems connected to the public network is severely tested. Most users try to protect
themselves against many abusive practices by using many security tools to keep their privacy safe. Information technology
security involves many branches that address the prevention and protection against malicious software. One of those branches
is the analysis of malicious files, specifically we will focus on the static analysis of malware. In static analysis, a suspicious
sample is not executed and observed as in dynamic analysis, but many tools and methods are used to extract meaningful
character strings from sample, data from the header of executable file format, information about the type of compression, the
type of compiler used to create the file, and last but not least the application code. This work provides an initial insight into the
complex subject of static analysis.

Keywords: Forensic analysis; Static analysis; Malware; Portable executable; String; PE header; Extractor; Obfuscation;
Compression.

1 INTRODUCTION

The aim of this work is to describe the basic tools
and methods used in the analysis of malware.
Malware analysis is a large part of Information
Technology (abbr. IT) security that is aimed at
preventing the spread of malicious software. It
analyses individual components of malware as well
as the behaviour of malware in the infected computer.
The main task of the analysis is to find out what
functionality a given malware has, i.e. what it does
and can do under what conditions. It is able to prevent
on-coming computer attacks by detecting the way
how malicious code get in your computer. For this
purpose, analysts are offered a large number of
methods and tools to analyse samples of malicious
software. An important part of the analysis is also
obtaining a sample of specific malware, which is
usually in the form of an executable file (in the
Windows operating system we can talk about files in
Portable Executable format). Finally, a report of
complete analysis should contain all the relevant
information about the malware that was collected
during the analysis [4].

2 MALWARE ANALYSIS

Methods of analysing malware can be divided into
two main branches - static and dynamic methods.
While both types of analysis have the same goal of
finding out how a given malware works, the tools,
time, and experience needed to perform the analysis
are different. The basic difference between these
methods is that in a static analysis, a given sample is
not executed, whereas in a dynamic analysis this is
necessary. Detailed static analysis of the program
involves the use of a disassembler to allow
subsequent analysis of the internal logic of the
software using the exposed code. Dynamic analysis
executes malicious code in a controlled environment
that closely monitors its behaviour. When performing
analysis of malicious software, pieces of information
from static and dynamic analysis complement each

other and help to get a complete picture of the
malware.

Generally, static analysis is the analysis of
computer software that is performed without the need
of executing programs. This analysis describes the
data structure of the program or the process of
analysing the code. Thanks to this, it is possible to
determine some functions of the analysed software.
Some of the static analysis methods are considered to
be the primary analysis of malware. Basic static
analysis provides information on whether a file is
considered to be harmful, processes data from the file
header (e.g. date of its creation) or provides a list of
strings used in the code (from libraries to Internet
Protocol addresses), but of course only if those parts
of the code are not obfuscated. This analytical method
is very fast and straightforward and quickly helps us
to get familiar with the basic functionality of the file
[4].

After the basic analysis, the acquired base of
knowledge can be further expand using methods and
tools of advanced analysis. The most detailed,
complex and time consuming method is the analysis
of the program code itself. This method consists of
decompilation the machine code of application into
the lowest-level programming language - assembly
language, or in some cases a higher programming
language or pseudocode, but there is a major problem
with the code reconstruction, because the high level
of abstraction sometimes makes the code
unintelligible. Because of their nature, languages
using intermediate representation (Java, C#) allow
decompilation to a much simpler form. There are also
some simplifications for other languages (e.g. IDA
with HexRays decompiler). This is followed by an
analysis of the program code, estimation of its
functionality and extraction of additional data from
the program code. Even though the analyst has an
executable program or any part of it, he does not have
the source code, so he sees only what is going to be
executed at the processor level, but not the high-level
concepts that author of the code actually used [3], [4].

Science & Military 1/2020

46

One of the main differences between static and
dynamic analysis is that static analysis is somewhat
safer than dynamic one because it does not directly
execute malicious code. Therefore, we do not need to
worry too much about becoming a victim of
dangerous malware techniques. The risk of accidental
execution of malware can be further reduced by using
a virtual machine (VMware, VirtualBox, etc.), by
analysing malware on an operating system for which
it was not made or by increasing the level of User
Account Control (confirmation is required to run the
program). Another advantage of the static analysis is
the possibility to detect potential functions of
malicious software that may not be found during
dynamic analysis. Although the static analysis is
more thorough, it is also more time-consuming. Many
methods used in static analysis increase the time
required to analyse code. Nowadays, almost every
malware is obfuscated, which means that parts of the
program are replaced by another functionally
equivalent parts that are encoded, compressed or
intentionally extended with random or confusing
code. Because of this, security teams do not use such
detailed analysis when dealing with a large number of
incidents. Limited capabilities, resources and time do
not allow each incident to be resolved by slow
methods and therefore security teams tend to use
automatic, partially less informative methods. And
even after a comprehensive analysis of the code, they
may not be able to identify all the functions that the
software could potentially perform (for example
external communication with websites, servers or
receiving encryption keys from the environment) [4],
[5].

3 ONLINE ANTIVIRUS SCAN

The first step in analysing files is to make sure that
sample is perceived as malicious code using available
antivirus (abbr. AV) tools. Online multi-AV scanners
provide a quick and clear picture of an unknown file
that can be potentially dangerous for us. In many
cases the use of these services is very easy because of
the intuitive and user-friendly interface. Some online
scanners allow their services to be used with their

own tools and scripts that allow the user to automate
and speed up repetitive tasks.

Before we begin, the risks associated with using
these services should be understood. False positives
and false negatives will always be a problem. Even if
100 % of antivirus products indicate that a file is safe,
that doesn’t necessarily mean the file is safe. This can
also be applied the other way around. In addition, if a
private instance of the service does not start, files that
have been uploaded to public websites may be
automatically shared with other resellers and third
parties. This is generally good because the vendors
need samples to build new signatures. However,
targeted malware may contain hard-coded usernames,
passwords, domain names, or Internet Protocol
addresses (abbreviated IP) of internal systems that
should not be distributed to suppliers and possibly to
the public. [1]

Probably the best known online tool for analysing
malware is VirusTotal. This tool allows you to upload
a dangerous file, check a suspicious Uniform
Resource Locator (abbr. URL), search for an already
uploaded file using a hash and so on. Then it can
perform automatic forensic analysis on the uploaded
file using more than 60 antivirus engines as shown in
Fig. 1. The result of such scan are simple pieces of
information quickly obtained by many methods of
static and dynamic analysis. On the other hand, the
disadvantage of this tool is its closed source code.
Similar features are provided by other online scanners
such as VirSCAN and Jotti [3], [6].

As previously mentioned, the use of multi-AV
online service is quite simple. All you need to know
is the URL of a specific online tool (eg
Www.virustotal.com, www.virscan.org or
virusscan.jotti.org) and after opening the website, the
suspicious file only needs to be dragged to the website
or the full path to the file which will be recorded and
scanned. These online scanners provide sophisticated
scripts and custom applications for their faster use
and automation of certain tasks. The script called
virt.py created by Xiaokui Shu was used to illustrate
the use of VirusTotal service. By modifying the
registry in Windows, this auxiliary batch script has
been added to the right-click context menu:

Fig. 1 Using the online VirusTotal service with the script
Source: [3]

Science & Military 1/2020

47

REG ADD "HKEY_CLASSES_ROOT*\shell\Scan
with VirusTotal"
REG ADD "HKEY_CLASSES_ROOT*\shell\Scan
with VirusTotal\command" /t REG_SZ /d
"\"%CD%\script_check_file.bat\" \"%%1\""

The code of the auxiliary batch script looks like
this:

REM Enter the directory which contains our scripts
cd /d "%~dp0"
REM Execute the script with the parameter -s (send
file) and the input data
python.exe virt.py -s %1
REM Wait for the online scanner to process the file
timeout /T 15 /NOBREAK
REM Execute the script with the parameter -r
(retrieve report) and the input data
python.exe virt.py -r %1

A community that uses online multi-AV scanner
services is raising its global level of IT security by
sharing results of scanned malicious files and URLs.
However, such openness to the community is also a
major disadvantage of the online scanner, what makes
it useless in some cases. Specifically, the biggest
problem is the fact that all users may retrieve a report
of any sample at any time. Authors usually modify
their malware to have a unique hash fingerprint (no
sample with that fingerprint has yet been analysed by
VirusTotal). And when the analyst uploads the
sample to VirusTotal, the author of malware
immediately learns that his malware was found and is
being analysed by a forensic analyst. Because of this,
an attacker may change the behavioural strategy, turn
off the sample and so on. Although the tool provides
helpful features and integrates many analytical
methods and tools, it is not advisable to use
VirusTotal during an analysis conducted by a security
team such as Computer Security Incident Response
Team (abbr. CSIRT) [1], [3].

4 EXTRACTION OF STRINGS

Extraction of strings (a sequence of Unicode and
ASCII characters - American Standard Code for
Information Interchange) from the suspicious
software is another method used by analysts when
analysing malicious files. This extraction is probably
the simplest method by which it is possible to reveal
some features of the program. This method tries to
find meaningful text strings in binary files that create
a sequence of bytes with values in the range of
printable characters ending with the byte of zero
value. It is basically a trivial data mining from the
binary files that can often be quite effective. It is a
source of a huge number of artefacts, some of which
may be crucial for forensic analysis. Such crucial
artefacts include various strings such as IP addresses
and URLs with which the malware is able to
communicate, registry keys with values, commands
that malware uses for communication over the

Internet (for example the Internet Relay Chat protocol
is easily recognized by its text commands), file names
and file paths that the malware works with, or
decryption keys for the encrypted parts of the code.
Although strings do not give a clear picture of the
purpose and capability of a file, they can give a hint
about what malware is capable of doing [4].

This approach will not work with encrypted
strings and the output may additionally contain a
significant amount of strings that do not represent any
meaningful information. Malware authors often use
tools and methods to prevent reverse engineering and
encoding or compression to make the analysis and
detection more complicated. A software without
malicious code almost always contain a large number
of strings, while compressed malware has only a few.
Therefore we know that if we encounter a software
containing a small number of strings, it is probably
compressed and may contain a malicious code. Then
the extraction of strings can be used again after the
hidden part of the code is unpacked.

4.1 Tools Strings, HexDive or BinText

Specialized software such as Strings, HexDive or
BinText can be used to search for strings stored in the
program. All of these programs search for Unicode
or ASCII characters and list all strings with a pre-set
length. Strings from Windows Sysinternals is a basic
tool that implements string extraction and its main
advantage is a great compatibility. Once downloaded,
it is a good idea to copy this tool to a directory which
is included in the environment variable named Path
(the content of the variable can be displayed by
executing the command “set“ or “echo %Path%“) or
add the path to the variable in order to run Strings
from the command line [3], [7].

If you want to list strings of seven or more
characters from a suspicious file, use the following
command (Fig. 2):

strings -n 7 -o input_file > C:\output.txt .

HexDive is an intelligent extractor that speeds up
the analysis of strings obtained from executable files.
This is achieved by displaying only the relevant
strings for malware analysis (its output is about two-
thirds smaller than the output of Strings) [5], [8].

Finally, BinText provides useful information
about strings in an intuitive graphical interface with
the options to search, filter and store the output data
in the table as depicted in Fig. 3. In the Windows
operating system the shortcut to this application or the
application itself may be copied to the folder
C:\Users\<username>\AppData\Roaming\Microsoft\
Windows\SendTo (in Explorer also accessible via the
address shell:sendto), that way, it'll be always
available for quick use [9].

Science & Military 1/2020

48

Fig. 2 Using the tool called Strings
Source: [5]

Fig. 3 Using the tool called BinText
Source: [3]

Science & Military 1/2020

49

5 PORTABLE EXECUTABLE FILE
FORMAT

In static analysis other very useful pieces of

information can be obtained from the headers and
sections of the Portable Executable (abbr. PE) file
format such as the list of all Dynamic-link Libraries
(abbr. DLL) and functions that the file imports.
Binary executable files (usually with extensions like
exe, dll, sys, acm, mui and others) used in all versions
of Windows operating system (abbr. OS) are
nowadays mostly in PE file format (rarely some
legacy file formats are used) which is defined by the
exact data structure. Data structure of PE file format
contains the information necessary for the Windows
OS loader to manage the wrapped executable code.
As the name implies, the Portable Executable file
format is portable between all versions of Windows
OS regardless of the way the processor carries out the
instructions of a computer program. Therefore the PE
file can be executed on 32-bit systems as well as 64-
bit systems [3].

The data structure of the PE file format apart from
the actual application code and application data also
defines the header where you can find detailed
information about that program. Excluding the
program code itself, the file header is one of the main
sources of information in the static analysis, mainly
because the header is available immediately at the
start of the analysis and it can provide a first insight
into the parameters and features of the analysed
malware. Fig. 4 shows the structure of PE files which

begins with a header containing information about the
code, the type of application, the required library
functions, the required disk space, the creation date
and many more. Just the list of used libraries and
function calls can reveal many features of the
program [5].

A PE file consists of a number of headers and
sections. To maintain compatibility with the old
Microsoft Disk Operating System (abbr. MS-DOS),
each PE file begins with a header programmed for
that system. This header is known as
IMAGE_DOS_HEADER. In most cases it only
contains the message "This program cannot be run in
DOS mode." Especially the first e_magic field is
interesting from an analyst's point of view because it
is always at the beginning of each executable file and
it has the fixed value of two characters (MZ).
Therefore, if the analyst knows that this is an
executable file, but there are no MZ characters at the
beginning of the file, it is possible that the file is
encrypted. Additionally these characters, together
with that MS-DOS message, can help us find out the
encryption key and decrypt the program because the
values of both these fields of data are known [3], [4].

The IMAGE_FILE_HEADER (PE Header)
structure contains basic information about the
file, such as the date and time the file was created
(TimeDateStamp), the number of sections
which immediately follow the headers
(NumberOfSections), the processor architecture
(Machine) for which the program is intended etc.
Such pieces of information are very important in the

Fig. 4 Structure of a portable executable file format
Source: [2]

Science & Military 1/2020

50

static analysis. For example, the creation date of the
file will determine whether it is an old sample or a
new one that has not yet been scanned by an antivirus
technology. Also a value stored in TimeDateStamp
could not make any sense at all (referring to the future
or the distant past). This artefact usually deepens our
suspicions that the file may be malicious [4].

Moreover the header of PE file includes a
structure called IMAGE_OPTIONAL_HEADER
(Optional PE Header), which contains additional
pieces of information for static analysis. There is an
important field called AddressOfEntryPoint that
contains the address of the entry point at which the
program execution starts. The ImageBase field is also
essential. It determines at which address in the
memory the image of the program should be placed.
Its default value is always 0x00400000 (for the DLL
it is 0x10000000) and, as with TimeDateStamp,
another value can be a sign of something potentially
malicious.

The headers are followed by a table of sections
and sections themselves which are an excellent source
of information for forensic analysis. Here we will be
interested in the sizes of individual sections. The
virtual size (VirtualSize) specifies how much space
should be reserved for the section when loaded into
memory. The field named SizeOfRawData contains
the size of the section or the size of the initialized data
on disk. These sizes should be with small variations
approximately the same. If the virtual size is much
larger than the size of raw data, it might indicate that
the file has been compressed [4].

One of the most useful pieces of information that
we can gather about an executable is the list of
functions that it imports. Imports are functions used
by one program that are actually stored in a different
program, such as code libraries that contain
functionality common to many programs. Code
libraries can be connected to the main executable by
linking. Programmers link imports to their programs
so that they don’t need to re-implement certain
functionality in multiple programs. The information
we can find in the PE file header depends on how the
library code has been linked. Code libraries can be
linked statically, at runtime, or dynamically [2].

Static linking is the process of copying the entire
code of imported functions directly into the body of
the program what may result in a huge increase of the
file size. Because of this impractical fact, static
linking is not very used nowadays. In the field of
malware analysis, dynamic and runtime linking is
crucial [4].

When dynamic linking is used, program imports
functions during its compilation. The code of the
function is not stored directly in the program but it is
stored only as a reference in the header of PE file. The
.idata section contains the import directory table
which includes a list of entries for every DLL which
is loaded by the executable. In the first stage of the
analysis, thanks to the import table the analyst can

figure out some of the application functions such as
the feature to connect to the Internet or work with
other files or resources. Based on this we can search
for other artefacts such as IP addresses, domain
names, file or application paths and so on [3].

The specialty of malware developers is the
runtime linking. In the runtime linking, the functions
are called during the program execution when a
specific function is directly requested. Functions are
neither imported at the time of compilation nor
embedded directly into the program code. These
functions are often called using the system functions
(known as system API) such as LoadLibrary,
GetProcAdress, LdrLoadLibrary, LdrGetProcAddr or
using a serial number (each function has an assigned
number). Then those system functions can be found
in the import directory table. Runtime linking is
usually used in the programs that are encoded,
compressed or encrypted, and their code is used as a
malware loader that extracts or decrypts the code of
the application itself, which then loads the required
libraries at runtime. Malware authors take advantage
of the compression or the encryption to hide program
functionality but it can be sometimes found in
legitimate applications as well [2], [4].

5.1 Tools CEF Explorer, GT2

The tool called CFF Explorer allows you to

extract the metadata from the PE file header as can be
seen in Fig. 5. Additionally it offers the basic
translation of machine language into assembly
language, but in practice it is preferred to use
specialized tools. The main advantage of this tool is
that it presents the results completely and precisely,
including the offset values, hexadecimal values with
their meaning and other values a field might contain.
On the other hand, the program expects that the user
will be professionally experienced and able to
correctly interpret the listed values. Therefore it does
not inform the user about any anomalies and does not
present any special results by their significance in
forensic analysis, but only completely presents the
results in the order in which they were found out [10].

GT2 is a command line program which is able to
identify most of the executable files and archives by
their binary signatures. So it is different from standard
Windows filetype detection since it does not consider
the file's extension by default. In addition, it can also
read and analyse the metadata obtained from the file
header [5], [11].

The frequently used tool called Dependency
Walker can list all DLL libraries used in executable
programs (this feature is also included in the tools
mentioned above). Dependency Walker also displays
a recursive tree of all the dependencies of the
executable file (all the files it requires to run) which
is evident in Fig. 6 [12].

Science & Military 1/2020

51

Fig. 5 Using the tool called CFF Explorer
Source: [5]

Fig. 6 Using the tool called Dependency Walker
Source: [12]

Science & Military 1/2020

52

6 COMPRESSION OF MALWARE

De-obfuscation is the process of turning
unintelligible information into something that you
can understand. De-obfuscation is an undeniable
requirement for malware analysis. Decoding,
decryption, and packing are classified as forms of
obfuscation. Although these terms differ slightly in a
technical sense, they’re all methods that attackers use
to keep eyes off certain information. Without de-
obfuscation techniques, your understanding of
malware and its capabilities will be limited [1].

Malware compression is a very popular method
for encrypting malicious programs because there are
a lot of free and easy-to-use utilities that can do it.
Compressed malware is smaller in size, difficult to
detect by antivirus programs and difficult to analyse.
The principle of the compression is to transform the
binary code of the executable file into another form.
As a result of this change, malware can escape the
attention of antivirus programs when detecting
signatures, because after each use of the compression
tool, a new, unique sample is created that the antivirus
databases do not recognize. Even several
compression tools can be used on a single sample
what may reduce the chance of successful detection
[4].

When trying to statically analyze packaged
malware, an extreme lack of information is evident.
No interesting strings were found, the list of imported
functions will be minimal (usually LoadLibrary and
GetProcAdress) and all program instructions will be
encrypted. The purpose of unpacking is to remove the
layer of confusion applied to the program when it was
packaged. There are many different methods for
unpacking programs, most of which can be classified
as manual or automated methods. Automated
unpackers can definitely save you time, but they don’t
always work [2].

There are many special tools that automate and
greatly simplify the detection of the packer (software
for compression of malware). One of the most used
are the veteran PEiD and frequently updated Exeinfo
PE. Both applications provide the user with an
intuitive graphical interface.

6.1 PEiD and Exeinfo Pe

The most popular and most widely used program
for basic analysis of malware is PEiD which can
extract essential information from the file header and
identify the type of compression or a compiler used to
create the malware as shown in Fig. 7. It can detect
over 470 different signatures in PE files. Official
support and development of this tool has ended, but it
is still often used in the analysis, mainly because it is
still possible to add a new signature to the database
based on which the compression methods are
identified [13].

Exeinfo PE is another free portable application for
extracting pieces of information about compression
tools from executable files (Fig. 8). The latest version
of the application (v0.0.5.6) is capable of detecting
more than 1040 specific signatures of PE files. An
external database containing approximately 4500
additional signatures (may not be reliable) is included
with the application. Furthermore, the user may use
other 490 signatures of files that are not executable.
This application also provides a lot of information
which is able to extract from the PE file header. Its
functionality can be further extended by
downloadable add-ons [14].

After successfully identifying the packer used in
the creation of malware we can proceed further with
its decompressing and disassembling (translating
machine language into assembly language -
assembler) with a number of specific tools. Then the
analyst is free to closely analyse the malicious code.

Fig. 8 Using the tool called Exeinfo PE
Source: [14]

Fig. 7 Using the tool called PEiD
Source: [13]

Source

Science & Military 1/2020

53

7 CONCLUSION

One of the goals of this work is to get yourself
familiar with the malware analysis, specifically with
the complex subject such as static analysis. This
includes clarifying what the analysis is and what it is
used for. This paper presents a brief overview of basic
methods and tools used in static analysis. Another
contribution of this paper is further description of
these analytical tools and methods. Finally, after
testing the analytical tools, it is advised to combine
them into a single package and automate their
functions to reduce the time required to perform a
static analysis, while ensuring that the resulting
malicious file report contains all the necessary
information.

References

[1] LIGH, M. H., ADAIR, S., HARTSTEIN, B.,

RICHARD, M.: Malware Analyst's Cookbook.
Indianopolis : Wiley Publishing, Inc., 2011.
s. 746. ISBN 978-0-470-61303-0.

[2] SIKORSKI, M., HONIG, A.: Practical Malware
Analysis. San Francisco : No Starch Press, Inc.,
2012. s. 802. ISBN-10: 1-59327-290-1.

[3] KRÁL, B.: Forenzní analýza malware. Brno :
Vysoké učení technické v Brne, 2018, s. 63.

[4] DANILOV, M.: Metody a nástroje malwarové
analýzy. Praha : Vysoká škola ekonomická
v Prahe, 2016. s. 85.

[5] FUJTÍK, O.: Zjišťování podobnosti malware.
Brno : Masarykova univerzita, 2014. s. 72.

[6] VirusTotal. [Online]. [accessed 20. July 2019].
Retrieved from: <https://www.virustotal.com/
gui>

[7] Strings – Windows Sysinternals. [Online].
[accessed 20. July 2019]. Retrieved from:
<https://docs.microsoft.com/en-us/sysinternals/
downloads/strings>

[8] HexDive 0.6. [Online]. [accessed 20. July 2019].
Retrieved from: <http://www.hexacorn.com/
blog/category/software-releases/hexdive>

[9] BinText. [Online]. [accessed 20. July 2019].
Retrieved from: <https://www.aldeid.com/wiki/
BinText>

[10] Explorer Suite. [Online]. [accessed 25. July
2019]. Retrieved from: https://ntcore.com/
?page_id=388

[11] GT2 0.34. [Online]. [accessed 25. July 2019].
Retrieved from: <http://www.helger.com/gt/
gt2.htm>

[12] Dependency Walker 2.2. [Online]. [accessed 25.
July 2019]. Retrieved from: <http://www.
dependencywalker.com>

[13] PEiD. [Online]. [accessed 1. February 2020].
Retrieved from: <https://www.aldeid.com/wiki/
PEiD>

[14] Exeinfo PE“ [Online]. [accessed 1. February
2020]. Retrieved from: <https://www.softpedia.
com/get/Programming/Packers-Crypters-
Protectors/ExEinfo-PE.shtml>

Lt. Dipl. Eng. Andrej FEDÁK (PhD. student)
Department of Computer Science
Armed Forces Academy of General M. R. Štefánik
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: andrej.fedak@gmail.com

Prof. Dipl. Eng. Jozef ŠTULRAJTER, CSc.
Armed Forces Academy of General M. R. Štefánik
Department of Computer Science
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: jozef.stulrajter@aos.sk

Andrej Fedák - was born in Žiar nad Hronom
in 1994. He received his engineering degree from the
Armed Forces Academy of General M. R. in the field
of Military Communication and Information
Systems. Nowadays, he is an officer of aeronautical
ground information systems - Air Force
Headquarters. His research is focuses on computer
networks, information systems, information and
cyber security.

Jozef Štulrajter works as a professor at the
Department of Informatics, Armed Forces Academy
of General M. R. Štefánik in Liptovský Mikuláš. He
graduated (Ing.) at the Military Technical College in
1974. He obtained the degree of CSc. diploma in
Theoretical Electrical Engineering - Theory of
Circuits and Systems of the Military Academy in
Liptovský Mikuláš in 1992. His research interests
include Information and Communication Technology
(ICTs), computer architectures, image coding,
computer security.

