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Abstract: Accelerated Cluster is currently the core architecture that drives computing performance in HPC  
applications. Graphic accelerators push the boundaries of the established parallel cluster architecture  
in a significant way, and in the near future, it will enable the achievement of exaflops milestone in HPC systems. Presented 
paper outlines basic elements of accelerated cluster architecture. It also explains decomposition and mapping in multistage 
architecture, using the data and task parallelism. Presented formal model describes the decomposition on all stages, allowing 
more efficient mapping and achieving an accelerated solution in a complex problem. 
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1 INTRODUCTION 

 
A computer cluster is a well-established 

architecture in High Performance Computing (HPC). 
The cluster consists of a number of computational 
nodes connected by high-speed networks, allowing 
hundreds of processors to be involved in the 
calculation. The computer cluster is not a new 
architecture and appeared in the 1960s. Its primary 
purpose was to overcome computational and memory 
constraints. Incorporating accelerators into a cluster 
architecture makes it an ideal computational tool for 
complex computational problems [1]. Nowadays, the 
most commonly used accelerators are based on GPUs 
and allow computing power to rise up to several 
PetaFLOPS [2]. The downside of this approach is 
more complex programming, often unique to each 
task. The accelerated cluster architecture is a key 
computational architecture, which will allow an entry 
into the exascale HPC era in the near future [3]. 

 
2 ACCELERATED CLUSTER 

ARCHITECTURE 
 

An accelerated cluster is a specific extension of 
the cluster architecture. A graphics accelerator can be 
included in the cluster node to enrich the node's 
computing capabilities with a massively parallel 
processor. If an accelerator is included in a cluster 
node, the memory system, communication model, 
decomposition and mapping of the problem to the 
architecture are modified. To simplify the 
architecture design and decomposition process, we 
have divided the accelerated cluster into three stages 
(Fig. 1): 
 cluster node stage, 
 basic cluster stage, 
 accelerator stage. 

The cluster node stage is represented by a single 
CPU based computing system. The basic cluster  
stage consists of interconnected cluster nodes 
forming the compute cluster [4]. The accelerator 
stage consists of graphical accelerators located within 
the cluster nodes. The cluster may be built  
on a heterogeneous basis and may contain accelerated 
and non-accelerated nodes. A cluster node that does 

not include a graphics accelerator is referred to as a 
non-accelerated node. Accelerated nodes may contain 
one or more accelerators. 

Compute and memory resources can be clearly 
identified at individual stages. It is also possible to 
identify the cost of data transfers. 

Due to the arrangement of the computational 
resources, it is possible to identify the parallel and 
serial portions of the problem at individual stages.  
At the basic cluster stage, a cluster nodes form the 
scalable cluster. Several cluster nodes can be included 
in the calculation and the algorithm can be 
implemented in parallel. CPU is a main 
computational resource at the cluster node stage. 
Although a single CPU may contain multiple cores or 
a cluster node may contain several CPUs, this single 
element is considered serial computational resource. 
The cluster node can use an accelerator stage for 
parallel calculations. At this stage, GPU is the basic 
computational element and it allows to implement 
massive parallelism. The algorithm should respect 
this distribution and use the parallel computational 
resources to implement parallel tasks of the problem 
and map the serial tasks to serial computational 
resources. Identifying parallel and serial tasks within 
the problem and map them correctly to individual 
stages of the accelerated cluster is an important, but 
not the only factor for successful acceleration. The 
accelerated cluster has two parallel computational 
stages. The first consists of a group of cluster nodes 
at the basic cluster stage. Graphical accelerators 
represent the second. While the basic stage creates 
parallelism by clustering the nodes, the graphics 
adapter has a separate massively parallel processor 
composed of multiple stream processors. Clustering 
of graphics adapters is possible but limited in terms 
of scalability. Grouping graphics adapters at an inter-
node level is very inefficient in terms of 
communication cost. This implies that basic stage 
parallelism differs from accelerator stage parallelism. 
While it appears to be the most efficient task 
parallelism at the basic cluster stage, data parallelism 
is more efficient at the accelerator stage.  

As we will see in the process of decomposition, 
the use of data parallelism at the basic cluster level is 
not excluded, sometimes it is even necessary.   
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Fig. 1 Accelerated cluster architecture  
Source: authors. 

 
 

3 DECOMPOSITION AT THE BASIC STAGE 
USING TASK PARALLELISM 
 
The P problem can be expressed as a set of its 

partial tasks T1, ... Tn, ie. P={T1, T2, ..., Tn}, n ∊ N  
(Fig. 2). 
 

 

Fig. 2 Problem decomposition  
Source: authors. 

 
Dependencies of the particular partial tasks Ti can 

be represented by means of an oriented graph of 
dependencies of partial tasks (GDPT) (Fig. 3). GDPT 
is the set of vertices which represent partial tasks 
(together with a specific partial task Result and 
oriented edges which express dependencies between 
individual tasks. We use the Result as a specific task 
to indicate the completion of the entire calculation. 

 

 
 

Fig. 3 An example of Graph of Dependencies  
of Partial Tasks  
Source: authors. 

 
Definition 1.1.: Let the P={T1, T2, ..., Tn}, n ∊ N 

be a problem. Then the graph of dependencies of 
partial tasks GDPT is called oriented graph  (V, E), 
whose set of vertices V=P∪ {Result} and set of edges 

E⊂ Px(P∪ {Result}). E contains oriented edge (Ti,Tj) 
just when the output of the partial task Ti is connected 
to the input of the  partial task Tj. 

Independent tasks are not dependent on the output 
of other partial tasks. Therefore, they can be used as 
primary elements of task sequences. These tasks do 
not create downtime and allow creating as many task 
sequences as the number of independent partial tasks 
included in the problem. 

Definition 1.2.: The task T is called an 
independent task if there is no oriented edge (V,T), 
V∊ P in the set of oriented edges. 

Using GDPT, we can divide problem P into 
disjunctive subsets of tasks P1, ..., Pk so that 

 
                   𝑃 = ⋃ 𝑃௜  ,௞

௜ୀଵ                        (1) 
 

𝑃௜ ∩ 𝑃௝ = ∅ for 𝑖 ≠ 𝑗, 
 
if two partial tasks belong to the same subset of tasks 
Pi, then there must be (oriented) path between the 
vertices in the GDPT. 

Since the GDPT may contain loops between tasks 
and the tasks of the individual Pi subsets must be 
arranged based on their mutual dependencies, for 
each subset of Pi described above, we define the 
sequence of tasks PTi: 

 
 𝑃𝑇௜: 𝑁௞೔

→ 𝑃௜ ,   𝑁௞೔
= {1, … , 𝑘௜},      (2) 

 
which will reflect the order of execution of individual 
tasks within a subset Pi. ki represents the number of 
elements in a given subset of tasks, and since there 
may generally be a cyclic dependency between the 
tasks, the above representation may not be bijective. 
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The elements of the individual sequence of tasks 
are arranged on the basis of the GDPT, whose 
arrangement determines in which order the individual 
partial tasks within the individual sequence of tasks 
must be performed. 

Definition 1.3.: The calculation plan CP will be 
understood as a set of task sequences. 

 
𝐶𝑃 = {𝑃𝑇௜ , 𝑖 = 1, … , 𝑘}, 𝑃௜ ∈ 𝑃       (3)                                      

 
where each sequence of tasks contains only partial 
tasks pertaining to one particular problem P. 

Definition 1.4.: Initial calculation plan is a 
calculation plan in which each sequence of tasks 
contains exactly one independent task. 

Independent tasks allow us to create several task 
sequences that can be processed in parallel. The initial 
calculation plan will contain as many sequences as 
the number of independent tasks in the problem.  

Definition 1.5.: An optimized calculation plan is a 
calculation plan on which the optimization steps O1 
and O2 were performed. 

Definition 1.6.: Let G = (V, E) be GDPT and 
                                                     

                               𝑡௏: 𝑉 →< 0, ∞)                        (4)                                        
 

𝑡ா: 𝐸 →< 0, ∞)                        (5)                                      
 
in which tV(Ti) represents the execution time of the 
task Ti, and tE(Ti,Tj) indicates the communication 
complexity between the output of the task Ti and the 
input of the task Tj. Then the oriented rated graph, 
which is obtained from the GDPT by evaluating its 
vertices using the tV mapping and the edges using the 
tE mapping, is called the rated graph of dependencies 
of partial tasks RGDPT (Fig. 4). 
 
 

 
 

Fig. 4 An example of Rated Graph of Dependencies of 
Partial Tasks 

 Source: authors. 
 

RGDPT unlike GDPT is an oriented graph whose 
vertices and edges are rated. Time values can be 
obtained by realizing the problem using the initial 
calculation plan, or in another way, e.g. testing and/or 
approximation. 

Definition 1.7.: The time period of the calculation  
<t1, t2> is called the serial period of the problem, if 
there is exactly one task active at each time t∊ < t1, 
t2>. 

The time period of calculation <t1, t2> is called 
the parallel period of the problem if at each time 
t∊<t1,t2> the number of the active tasks k is equal to 
the number of sequences of tasks. 

The period of the calculation <t1, t2> is called a 
partially parallel period of the problem if at each time 
t∊< t1, t2>, 1 < number of active tasks < k. 

Definition 1.8.: The time interval <t1, t2> for the 
PTi task sequence is called idle if the time period <t1, 
t2> is a serial or partially parallel period and no task 
is active in the interval <t1, t2> in the given task 
sequence PTi (Fig. 5). 

 

 
 

Fig. 5 An example of parallel, partially parallel and serial 
time periods of problem 

 Source: authors. 
 

The objective of the optimization step O1 is to 
maximize the use of hardware computing resources. 
The transfer of tasks to replace idles is possible if 
tV(Ti) ≤ tidle. Such move does not increase the 
problem processing time, but it reduces inter-nod 
communication. 

The objective of the optimization step O2 is to 
reduce communication overhead. It is necessary to 
consider the possibility of moving the tasks which 
communicate with the tasks included in other task 
sequences to these sequences. 

Let T ∊ PTi be a task included in the PTi task 
sequence. Then its input communication complexity 
(ICC) will be defined as follows 
 

  𝐼𝐶𝐶௉்௜(𝑇) = ∑ 𝑡ா(𝑉, 𝑇)(௏,்)∈ா,௏∉௉்೔
       (6)  

 
and output communication complexity (OCC) will 
be defined with the following formula 

                                    
𝑂𝐶𝐶௉்௜(𝑇) = ∑ 𝑡ா(𝑇, 𝑉)(்,௏)∈ா,௏∉௉்೔

       (7)                                
 
Formulas (6) and (7) take into account the fact that 

communication complexity is neglected for the tasks 
assigned to the same sequence.  

 
max( 𝑇) = 𝑚𝑎𝑥௏∈௉{𝑡ா(𝑇, 𝑉)} and      (8)                                
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Vmax(T) is a task to which it applies  
tE(T,Vmax(T)) = max(T) 

 
Thus Vmax(T) is the task to which from T leads the 

edge with the maximum rating (ie. with the maximum 
communication complexity). 

Further, PTVmax(T) is the sequence of tasks to 
which Vmax(T) belongs. Then in the optimization step 
O2 we move the partial task T to the sequence of tasks 
PTVmax(T) if 
 

൬𝑂𝐶𝐶௉்ೇ೘ೌೣ(౐)
(𝑇) + 𝐼𝐶𝐶௉்ೇ೘ೌೣ(౐)

(𝑇)൰ <

  (𝑂𝐶𝐶௉்೔
(𝑇) + 𝐼𝐶𝐶௉்೔

(𝑇))         (9) 
 

 

 

Fig. 6 An example of optimization  
Source: authors. 

 
During the O2 optimization step it is necessary to 

determine between which tasks the maximum 
communication complexity arises. Based on formula 
9, the input and output communication complexity is 
compared before and after the transfer of task T to 
PTVmax(T). If the formula 9 is true, the task T is moved 
to PTVmax(T) and the result is the optimization of the 
communication costs for the task. If the formula 9 
does not apply, the task remains in the original 
sequence of tasks (Fig. 6). 

If the partial tasks of the problem are completely 
independent, these problems can be mapped to 
separate computational nodes. 

 
4 DECOMPOSITION AT THE BASIC STAGE 

USING DATA PARALLELISM 
 
Definition 1.9.: If the problem P = {T1, T2, ..., Tn}, n 
∊ N contains exactly one independent task T1 and at 
the same time GDPT contains just edges (T1, T2), (T2, 
T3), (T3, T4), ..., (Tn-1, Tn), then we call the P problem 
a serial problem. 

It is not possible to effectively use task parallelism 
for a serial problem. If the processed data can be 
decomposed into smaller units (subsets) with the 
same data structure that do not directly depend on 
each other (the task uses just one subset of the 

processed data during the calculation), then it is 
possible to parallelize the serial problem using data 
parallelism. If data parallelism is used, several copies 
of the problem are created and they process different 
parts of the data on separate computational nodes 
(Fig. 7). 
 

 

Fig. 7 Data parallelism  
Source: authors. 

 
5 DECOMPOSITION AT THE NODE STAGE 
 

In order to use the acceleration stage, we need to 
express the task T as a sequence of its portions (u1, u2, 
..., uk).  Projection 𝐴𝐶𝐶𝑇௜: 𝑢 → {𝑆, 𝑃} assigns the way 
the portions (u1, u2, ..., uk) are processed. The portion 
labeled S (serial) is processed by the CPU and the 
portions labeled P (parallel) are processed using the 
GPU [5] (Fig. 8). 

 

 

Fig. 8 Task portions S and P 
Source: authors. 

 
6 MAPPING PROBLEM TO 

ARCHITECTURE 
 

The accelerated cluster AC can be expressed as a 
set of cluster nodes K containing GPU accelerators 
AC = {Ki, i = 1, .., N}. 

The mapping of the problem to computational 
resources can be expressed at cluster node level as 
projection of CP to AC with the mapping of serial and 
parallel portions of tasks described in the previous 
section. Problem to architecture mappings use the 
following scheme:  
 problem P → accelerated cluster AC, 
 task sequence PT  → cluster node  

Ki, i∊1...N, 
 serial portion S → CPU, 
 parallel portion P → GPU. 
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7 CHARACTERISTICS OF THE 
ADAPTABLE PROBLEM GROUP 
 
The decomposition process allows us to tailor 

selected problems so that they can be implemented on 
an accelerated cluster architecture, and the overall 
result is available in a shorter time in contrast with 
 a serial system. Furthermore, decomposition makes 
it possible to identify problems whose processing is 
not effective on accelerated parallel architecture and 
does not speed up the overall solution of the problem. 

With accelerated cluster architecture, the 
decomposition process is divided into several stages. 
At the basic cluster stage, the problem is divided into 
the tasks. The distribution should be coarse-grained 
and the tasks should not be elementary. If there is a 
high degree of dependency between the tasks, or if the 
tasks have serial characteristics, it is necessary to 
reconsider the structure of the processed data 
package. If the data package contains repetitive data 
or data that can be processed independently, the task 
can be effectively parallelized using the above 
methods. Problems that do not have these 
characteristics are not suitable for processing using 
accelerated cluster architecture. 

At the cluster node stage, tasks are divided into 
serial and parallel portions. The CPU handles serial 
portions while parallel portions are processed by the 
GPU. The quality of the processing of parallel 
portions at the acceleration stage are highly 
dependent on the level of code optimization and 
hardware utilization [6]. 

Decomposition is looking for the appropriate 
arrangement of the individual parts of the problem 
and the data so that the problem can be mapped to 
accelerated cluster resources in order to achieve the 
best problem-solving performance. 

From the perspective of decomposition, problems 
with low level of dependency among the tasks or/and 
low level of dependencies within the processed data 
will be the best candidates for the mapping to the to 
the accelerated cluster architecture [7]. 
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