
Science & Military 1/2020

28

FORMAL MODEL OF DECOMPOSITION AND MAPPING
IN ACCELERATED CLUSTER ARCHITECTURE

Miloš OČKAY, Ľubomír DEDERA

Abstract: Accelerated Cluster is currently the core architecture that drives computing performance in HPC
applications. Graphic accelerators push the boundaries of the established parallel cluster architecture
in a significant way, and in the near future, it will enable the achievement of exaflops milestone in HPC systems. Presented
paper outlines basic elements of accelerated cluster architecture. It also explains decomposition and mapping in multistage
architecture, using the data and task parallelism. Presented formal model describes the decomposition on all stages, allowing
more efficient mapping and achieving an accelerated solution in a complex problem.

Keywords: Computer cluster; GPU; Accelerator; Parallel; Decomposition; Mapping.

1 INTRODUCTION

A computer cluster is a well-established

architecture in High Performance Computing (HPC).
The cluster consists of a number of computational
nodes connected by high-speed networks, allowing
hundreds of processors to be involved in the
calculation. The computer cluster is not a new
architecture and appeared in the 1960s. Its primary
purpose was to overcome computational and memory
constraints. Incorporating accelerators into a cluster
architecture makes it an ideal computational tool for
complex computational problems [1]. Nowadays, the
most commonly used accelerators are based on GPUs
and allow computing power to rise up to several
PetaFLOPS [2]. The downside of this approach is
more complex programming, often unique to each
task. The accelerated cluster architecture is a key
computational architecture, which will allow an entry
into the exascale HPC era in the near future [3].

2 ACCELERATED CLUSTER

ARCHITECTURE

An accelerated cluster is a specific extension of
the cluster architecture. A graphics accelerator can be
included in the cluster node to enrich the node's
computing capabilities with a massively parallel
processor. If an accelerator is included in a cluster
node, the memory system, communication model,
decomposition and mapping of the problem to the
architecture are modified. To simplify the
architecture design and decomposition process, we
have divided the accelerated cluster into three stages
(Fig. 1):
 cluster node stage,
 basic cluster stage,
 accelerator stage.

The cluster node stage is represented by a single
CPU based computing system. The basic cluster
stage consists of interconnected cluster nodes
forming the compute cluster [4]. The accelerator
stage consists of graphical accelerators located within
the cluster nodes. The cluster may be built
on a heterogeneous basis and may contain accelerated
and non-accelerated nodes. A cluster node that does

not include a graphics accelerator is referred to as a
non-accelerated node. Accelerated nodes may contain
one or more accelerators.

Compute and memory resources can be clearly
identified at individual stages. It is also possible to
identify the cost of data transfers.

Due to the arrangement of the computational
resources, it is possible to identify the parallel and
serial portions of the problem at individual stages.
At the basic cluster stage, a cluster nodes form the
scalable cluster. Several cluster nodes can be included
in the calculation and the algorithm can be
implemented in parallel. CPU is a main
computational resource at the cluster node stage.
Although a single CPU may contain multiple cores or
a cluster node may contain several CPUs, this single
element is considered serial computational resource.
The cluster node can use an accelerator stage for
parallel calculations. At this stage, GPU is the basic
computational element and it allows to implement
massive parallelism. The algorithm should respect
this distribution and use the parallel computational
resources to implement parallel tasks of the problem
and map the serial tasks to serial computational
resources. Identifying parallel and serial tasks within
the problem and map them correctly to individual
stages of the accelerated cluster is an important, but
not the only factor for successful acceleration. The
accelerated cluster has two parallel computational
stages. The first consists of a group of cluster nodes
at the basic cluster stage. Graphical accelerators
represent the second. While the basic stage creates
parallelism by clustering the nodes, the graphics
adapter has a separate massively parallel processor
composed of multiple stream processors. Clustering
of graphics adapters is possible but limited in terms
of scalability. Grouping graphics adapters at an inter-
node level is very inefficient in terms of
communication cost. This implies that basic stage
parallelism differs from accelerator stage parallelism.
While it appears to be the most efficient task
parallelism at the basic cluster stage, data parallelism
is more efficient at the accelerator stage.

As we will see in the process of decomposition,
the use of data parallelism at the basic cluster level is
not excluded, sometimes it is even necessary.

Science & Military 1/2020

29

Fig. 1 Accelerated cluster architecture
Source: authors.

3 DECOMPOSITION AT THE BASIC STAGE
USING TASK PARALLELISM

The P problem can be expressed as a set of its

partial tasks T1, ... Tn, ie. P={T1, T2, ..., Tn}, n ∊ N
(Fig. 2).

Fig. 2 Problem decomposition
Source: authors.

Dependencies of the particular partial tasks Ti can

be represented by means of an oriented graph of
dependencies of partial tasks (GDPT) (Fig. 3). GDPT
is the set of vertices which represent partial tasks
(together with a specific partial task Result and
oriented edges which express dependencies between
individual tasks. We use the Result as a specific task
to indicate the completion of the entire calculation.

Fig. 3 An example of Graph of Dependencies
of Partial Tasks
Source: authors.

Definition 1.1.: Let the P={T1, T2, ..., Tn}, n ∊ N

be a problem. Then the graph of dependencies of
partial tasks GDPT is called oriented graph (V, E),
whose set of vertices V=P∪ {Result} and set of edges

E⊂ Px(P∪ {Result}). E contains oriented edge (Ti,Tj)
just when the output of the partial task Ti is connected
to the input of the partial task Tj.

Independent tasks are not dependent on the output
of other partial tasks. Therefore, they can be used as
primary elements of task sequences. These tasks do
not create downtime and allow creating as many task
sequences as the number of independent partial tasks
included in the problem.

Definition 1.2.: The task T is called an
independent task if there is no oriented edge (V,T),
V∊ P in the set of oriented edges.

Using GDPT, we can divide problem P into
disjunctive subsets of tasks P1, ..., Pk so that

 𝑃 = ⋃ 𝑃௜ ,௞

௜ୀଵ (1)

𝑃௜ ∩ 𝑃௝ = ∅ for 𝑖 ≠ 𝑗,

if two partial tasks belong to the same subset of tasks
Pi, then there must be (oriented) path between the
vertices in the GDPT.

Since the GDPT may contain loops between tasks
and the tasks of the individual Pi subsets must be
arranged based on their mutual dependencies, for
each subset of Pi described above, we define the
sequence of tasks PTi:

 𝑃𝑇௜: 𝑁௞೔

→ 𝑃௜ , 𝑁௞೔
= {1, … , 𝑘௜}, (2)

which will reflect the order of execution of individual
tasks within a subset Pi. ki represents the number of
elements in a given subset of tasks, and since there
may generally be a cyclic dependency between the
tasks, the above representation may not be bijective.

Science & Military 1/2020

30

The elements of the individual sequence of tasks
are arranged on the basis of the GDPT, whose
arrangement determines in which order the individual
partial tasks within the individual sequence of tasks
must be performed.

Definition 1.3.: The calculation plan CP will be
understood as a set of task sequences.

𝐶𝑃 = {𝑃𝑇௜ , 𝑖 = 1, … , 𝑘}, 𝑃௜ ∈ 𝑃 (3)

where each sequence of tasks contains only partial
tasks pertaining to one particular problem P.

Definition 1.4.: Initial calculation plan is a
calculation plan in which each sequence of tasks
contains exactly one independent task.

Independent tasks allow us to create several task
sequences that can be processed in parallel. The initial
calculation plan will contain as many sequences as
the number of independent tasks in the problem.

Definition 1.5.: An optimized calculation plan is a
calculation plan on which the optimization steps O1
and O2 were performed.

Definition 1.6.: Let G = (V, E) be GDPT and

 𝑡௏: 𝑉 →< 0, ∞) (4)

𝑡ா: 𝐸 →< 0, ∞) (5)

in which tV(Ti) represents the execution time of the
task Ti, and tE(Ti,Tj) indicates the communication
complexity between the output of the task Ti and the
input of the task Tj. Then the oriented rated graph,
which is obtained from the GDPT by evaluating its
vertices using the tV mapping and the edges using the
tE mapping, is called the rated graph of dependencies
of partial tasks RGDPT (Fig. 4).

Fig. 4 An example of Rated Graph of Dependencies of
Partial Tasks

 Source: authors.

RGDPT unlike GDPT is an oriented graph whose
vertices and edges are rated. Time values can be
obtained by realizing the problem using the initial
calculation plan, or in another way, e.g. testing and/or
approximation.

Definition 1.7.: The time period of the calculation
<t1, t2> is called the serial period of the problem, if
there is exactly one task active at each time t∊ < t1,
t2>.

The time period of calculation <t1, t2> is called
the parallel period of the problem if at each time
t∊<t1,t2> the number of the active tasks k is equal to
the number of sequences of tasks.

The period of the calculation <t1, t2> is called a
partially parallel period of the problem if at each time
t∊< t1, t2>, 1 < number of active tasks < k.

Definition 1.8.: The time interval <t1, t2> for the
PTi task sequence is called idle if the time period <t1,
t2> is a serial or partially parallel period and no task
is active in the interval <t1, t2> in the given task
sequence PTi (Fig. 5).

Fig. 5 An example of parallel, partially parallel and serial
time periods of problem

 Source: authors.

The objective of the optimization step O1 is to
maximize the use of hardware computing resources.
The transfer of tasks to replace idles is possible if
tV(Ti) ≤ tidle. Such move does not increase the
problem processing time, but it reduces inter-nod
communication.

The objective of the optimization step O2 is to
reduce communication overhead. It is necessary to
consider the possibility of moving the tasks which
communicate with the tasks included in other task
sequences to these sequences.

Let T ∊ PTi be a task included in the PTi task
sequence. Then its input communication complexity
(ICC) will be defined as follows

 𝐼𝐶𝐶௉்௜(𝑇) = ∑ 𝑡ா(𝑉, 𝑇)(௏,்)∈ா,௏∉௉்೔
 (6)

and output communication complexity (OCC) will
be defined with the following formula

𝑂𝐶𝐶௉்௜(𝑇) = ∑ 𝑡ா(𝑇, 𝑉)(்,௏)∈ா,௏∉௉்೔

 (7)

Formulas (6) and (7) take into account the fact that

communication complexity is neglected for the tasks
assigned to the same sequence.

max(𝑇) = 𝑚𝑎𝑥௏∈௉{𝑡ா(𝑇, 𝑉)} and (8)

Science & Military 1/2020

31

Vmax(T) is a task to which it applies
tE(T,Vmax(T)) = max(T)

Thus Vmax(T) is the task to which from T leads the

edge with the maximum rating (ie. with the maximum
communication complexity).

Further, PTVmax(T) is the sequence of tasks to
which Vmax(T) belongs. Then in the optimization step
O2 we move the partial task T to the sequence of tasks
PTVmax(T) if

൬𝑂𝐶𝐶௉்ೇ೘ೌೣ(౐)
(𝑇) + 𝐼𝐶𝐶௉்ೇ೘ೌೣ(౐)

(𝑇)൰ <

 (𝑂𝐶𝐶௉்೔
(𝑇) + 𝐼𝐶𝐶௉்೔

(𝑇)) (9)

Fig. 6 An example of optimization
Source: authors.

During the O2 optimization step it is necessary to

determine between which tasks the maximum
communication complexity arises. Based on formula
9, the input and output communication complexity is
compared before and after the transfer of task T to
PTVmax(T). If the formula 9 is true, the task T is moved
to PTVmax(T) and the result is the optimization of the
communication costs for the task. If the formula 9
does not apply, the task remains in the original
sequence of tasks (Fig. 6).

If the partial tasks of the problem are completely
independent, these problems can be mapped to
separate computational nodes.

4 DECOMPOSITION AT THE BASIC STAGE

USING DATA PARALLELISM

Definition 1.9.: If the problem P = {T1, T2, ..., Tn}, n
∊ N contains exactly one independent task T1 and at
the same time GDPT contains just edges (T1, T2), (T2,
T3), (T3, T4), ..., (Tn-1, Tn), then we call the P problem
a serial problem.

It is not possible to effectively use task parallelism
for a serial problem. If the processed data can be
decomposed into smaller units (subsets) with the
same data structure that do not directly depend on
each other (the task uses just one subset of the

processed data during the calculation), then it is
possible to parallelize the serial problem using data
parallelism. If data parallelism is used, several copies
of the problem are created and they process different
parts of the data on separate computational nodes
(Fig. 7).

Fig. 7 Data parallelism
Source: authors.

5 DECOMPOSITION AT THE NODE STAGE

In order to use the acceleration stage, we need to
express the task T as a sequence of its portions (u1, u2,
..., uk). Projection 𝐴𝐶𝐶𝑇௜: 𝑢 → {𝑆, 𝑃} assigns the way
the portions (u1, u2, ..., uk) are processed. The portion
labeled S (serial) is processed by the CPU and the
portions labeled P (parallel) are processed using the
GPU [5] (Fig. 8).

Fig. 8 Task portions S and P
Source: authors.

6 MAPPING PROBLEM TO

ARCHITECTURE

The accelerated cluster AC can be expressed as a
set of cluster nodes K containing GPU accelerators
AC = {Ki, i = 1, .., N}.

The mapping of the problem to computational
resources can be expressed at cluster node level as
projection of CP to AC with the mapping of serial and
parallel portions of tasks described in the previous
section. Problem to architecture mappings use the
following scheme:
 problem P → accelerated cluster AC,
 task sequence PT → cluster node

Ki, i∊1...N,
 serial portion S → CPU,
 parallel portion P → GPU.

Science & Military 1/2020

32

7 CHARACTERISTICS OF THE
ADAPTABLE PROBLEM GROUP

The decomposition process allows us to tailor

selected problems so that they can be implemented on
an accelerated cluster architecture, and the overall
result is available in a shorter time in contrast with
 a serial system. Furthermore, decomposition makes
it possible to identify problems whose processing is
not effective on accelerated parallel architecture and
does not speed up the overall solution of the problem.

With accelerated cluster architecture, the
decomposition process is divided into several stages.
At the basic cluster stage, the problem is divided into
the tasks. The distribution should be coarse-grained
and the tasks should not be elementary. If there is a
high degree of dependency between the tasks, or if the
tasks have serial characteristics, it is necessary to
reconsider the structure of the processed data
package. If the data package contains repetitive data
or data that can be processed independently, the task
can be effectively parallelized using the above
methods. Problems that do not have these
characteristics are not suitable for processing using
accelerated cluster architecture.

At the cluster node stage, tasks are divided into
serial and parallel portions. The CPU handles serial
portions while parallel portions are processed by the
GPU. The quality of the processing of parallel
portions at the acceleration stage are highly
dependent on the level of code optimization and
hardware utilization [6].

Decomposition is looking for the appropriate
arrangement of the individual parts of the problem
and the data so that the problem can be mapped to
accelerated cluster resources in order to achieve the
best problem-solving performance.

From the perspective of decomposition, problems
with low level of dependency among the tasks or/and
low level of dependencies within the processed data
will be the best candidates for the mapping to the to
the accelerated cluster architecture [7].

References

[1] KOLLÁR, J.: Metódy a prostriedky pre výkonné

paralelné výpočty. Košice : Elfa, 2003. 106 p.
ISBN 80-89066-70-4.

[2] MEUER, H., DONGARRA, J., STROHMAIER,
E.: TOP500 Supercomputing sites. TOP500,
2020, [cit. 2020]. Available at:
<http://www.top500.org/>

[3] INTEL: Driving Exascale Computing and HPC
with Intel. 2019, [cit. 2019] Available at:
<https://www.intel.com/content/www/us/en/high
-performance-computing-fabrics/omni-path-
driving-exascale-computing.html>

[4] BOOKMAN, CH.: Linux Clustering: Building
and Maintaining Linux Cluster. Indianapolis :

Sams Publishing, 2002. 300 p. ISBN 1-57870-
274-7.

[5] SHOWERMAN, M., ENOS, J., PANT, J. A.,
KINDRATENKO, V., STEFFEN, C.,
PENNINGTON, R., HWU, W.: QP: A
Heterogeneous Multi-Accelerator Cluster. In 10th
LCI International Conference on High-
Performance Clustered Computing, 2009.
Available at: <http://web-test.ncsa.illinois.edu/~
kindr/papers/lci09_paper.pdf>

[6] RYOO, S., RODRIGUES, Ch., BAGHSORKHI,
S., STONE, S., KIRK, D., HWU, W.:
Optimization principles and application
performance evaluation of a multithreaded GPU
using CUDA. In Proc. of 13th ACM SIGPLAN
Symposium, New York : ACM, 2008. ISBN 978-
1-59593-795-7.

[7] OČKAY, M., DROPPA, M.: Embarrassingly
parallel problem processed on accelerated multi-
level parallel architecture. 2011, Informatics
2011 : proceedings of the eleventh international
conference on Informatics : November 16 - 18,
2011 Rožňava, Slovakia. Košice : Technical
University of Košice, 2011. ISBN 978-80-89284-
94-8. - S. 29-32p.

Dipl. Eng. Miloš OČKAY, PhD.
Armed Forces Academy of General M. R. Štefánik
Department of Informatics
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: milos.ockay@aos.sk

Assoc. Prof. RNDr. Ľubomír DEDERA, PhD.
Armed Forces Academy of General M. R. Štefánik
Department of Informatics
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: lubomir.dedera@aos.sk

Miloš Očkay is an assistant professor at the Department
of Informatics at the Armed Forces Academy in
Liptovský Mikuláš. In 2003 he graduated (MSc.) at
Military Academy in Liptovský Mikuláš as a civil
student. He holds PhD. degree in the field of Informatics,
received in 2012 from the Technical University of
Košice. His scientific research is focuses on parallel
computing, computer graphics and steganography.

Ľubomír Dedera works as an Associate Professor at the
Department of Informatics, Armed Forces Academy in
Liptovský Mikuláš. He graduated (RNDr.) from the
Faculty of Mathematics and Physics, Comenius
University in Bratislava in 1990. He received a PhD.
degree in Artificial Intelligence from the Military
Academy in Liptovský Mikuláš in 1997. His research
interests include computer languages, computer security
and artificial intelligence.

