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Abstract: The main goal of the article is to evaluate performance characteristics of a custom virtual machine instruction set 
emulator. The instruction set has been designed as part of research aimed at utilization of custom virtual machines in the area 
of obfuscation techniques for software protection and malware detection, with the aim to efficiently implement the particular 
algorithm (CRC16). In the paper we compare performance characteristics of two implementations of the CRC16 algorithm – 
in the emulated custom virtual machine instruction set and the direct C-to-x86-compiled executable. The aim is to show that 
the emulation process of such a simple virtual machine has only minor influence on execution time in comparison with the  
C-to-x86-compiled code. 
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1 INTRODUCTION 
 

Emulators allows to run code written for one 
architecture on another architecture.  There are many 
emulators. For example, QEMU (1), Android 
Emulator (2) and many more. Emulation is also 
a promising method of software obfuscation (3).  
In (4) was custom reconfigurable instruction set 
proposed. The main goal of that custom virtual 
machine instruction set is to research static properties 
of reconfigurable instruction set emulators. 
It concludes with presenting findings that, using 
presented approach, it is possible to generate binaries 
with the same dynamic properties, but with different 
static properties. After reviewing static properties 
of the proposed emulator, the focus is switched to its 
dynamic properties. One of the requirements 
on software obfuscators from dynamic point of view 
is code efficiency or performance efficiency. It means 
that obfuscated code should not run much slower than 
the original code (5). Time measurements are as well 
used as methods for anomaly detections (6), (7),  
(8). The goal of this paper is to evaluate performance 
impact of the proposed custom virtual machine 
instruction set emulator running on top of the x86 
architecture operating system with comparison 
towards direct x86 implementation. For this 
evaluation, CRC-16 algorithm implementation 
is used.  

 
2 VIRTUAL MACHINE INSTRUCTION SET 

DESIGN 
 

In (4) a custom virtual machine instruction set 
was proposed. Requirements were focused on simple 
and extensible instruction set creation. However, 
it was insufficient for the CRC16 (9) algorithm 
implementation. That is why the whole emulator 
has been rewritten specifically for CRC16 
implementation with the following changes: 

 Registers – The number of general-
purpose registers has been increased 
from eight to sixteen registers. 

 Instructions – The previously proposed 
instruction set lacked instructions that 

are necessary for the CRC16 
implementation. 

 
Here we sum up the updated RISC-like 

architecture emulator attributes: 
 Architecture – virtual machine template 

design is based on von Neumann 
architecture with shared memory 
between data and instructions. 

 Memory size – virtual machine template 
design memory size is 32-bit. It consists 
of 16-bit addresses pointing to 16-bit 
values. 

 Instruction type – virtual machine 
template design uses instructions of 
fixed length (16 bits per instruction). 

 Registers – virtual machine template 
design uses 16 registers. Fifteen of them 
are general purpose registers. 
In addition, there is the instruction 
pointer register. 

 Flags – virtual machine template design 
uses 3 flags. It updates them after every 
instruction execution. The flags are – 
FLAG_ZERO, FLAG_POSITIVE and 
FLAG_NEGATIVE. Their names 
describe theirs purpose. 

 Instructions – custom virtual machine 
instruction set consists just 
of instructions necessary to implement 
the CRC16 algorithm. Here is a list 
of previously implemented instructions 
for reference: 

 LA is an instruction used for loading 8-
bit value into registers, for example LA 
R0, 0x00000001 will load value 1 into 
register R0. This instruction is used 
for loading smaller constant values or 
addresses pointing to bigger values 
in memory.  

 LV is an instruction used for loading 
value pointed by address in one register 
into another register, for example LV R0, 
R1 will load value from address where is 
register R1 pointing into register R0. 
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 XOR is an instruction used 
for performing logical xor operation 
between 2 registers and writing output 
to another register; for example, XOR 
R0, R1, R2 will do the following 
operation: R0 := R1 XOR R2. This 
instruction is used in addition to XOR 
also for setting the registry values to 0. 

 ADD is an instruction used for adding 2 
registers and writing output to another 
register; for example, ADD R0, R1, R2 
will do following operation: R0 := R1 + 
R2. 

 MOV is an instruction used for copying 
a value from one register to another; 
for example, MOV R0, R1 will copy 
value from register R1 into register R0. 

 CMP is an instruction used for  
comparing 2 registers; for example, 
CMP R0, R1 will compare value 
in register R0 with value in register  
R1 and based on the result, is will update 
flags. If R0 equals to R1  
then the instruction will set 
the  FLAG_ZERO. If R0 is greater than 
R1, the instruction will set 
the FLAG_POSITIVE and if R0  
is smaller than R1, 
the FLAG_NEGATIVE is set. 

 JNZ is an instruction used 
for conditional branching; for example, 
JNZ R6 will do conditional jump 
to the address in register R6 if 
FLAG_ZERO is not set, and otherwise, 
it will continue with another instruction. 
Together with CMP instruction can 
be used for cycle implementation.  

 PRINT is an instruction used for printing 
the value stored in a register; 
for example, PRINT R0 will print 
the value in register R0 on the standard 
output. 

 HALT is an instruction used for halting 
the custom virtual machine down. 
If  the  interpreter encounters this 
instruction, it will shut down. 
 

Newly added instructions: 
 

 SUB is an instruction used 
for subtraction; for example, 
SUB R0, R1, R2 will subtract value 
in R2 from R1 and write result to R0. 

 JNE is an instruction used 
for conditional branching; for example, 
JNE R0 will do conditional jump 
to address stored in register R0 if 
FLAG_ZERO is not set, and otherwise, 
it will continue with next instruction. 

Together with CMP instruction, can be 
used for cycle implementation.  

 JB is an instruction used for conditional 
branching; for example, JB R0 will do 
conditional jump to address stored 
in register R0 if FLAG_NEGATIVE  
is set, and otherwise, it will  
continue with next instruction. Together 
with CMP instruction, can be used 
for cycle implementation. 

 AND is an instruction used for  
AND logical operation between two 
registers; for example, AND R0,  
R1, R2 will do following operation 
R0 := R1 AND R2.  

 OR is an instruction used for OR logical 
operation between two registers; 
for example, OR R0, R1, R2  
will do  following operation 
R0 := R1 OR R2.  

 LSHIFT is an instruction used 
for bitwise left shift operation; for 
example, LSHIFT R0, R1, R2 will do 
following operation R0 := R1 << R2. 

 RSHIFT is an instruction used 
for bitwise right shift operation; 
for example, RSHIFT R0, R1, R2 will do 
following operation R0 := R1 >> R2. 

 
3 PROPOSAL OF THE MEASURE 
 

The goal of this paper is to measure execution 
time needed to perform CRC16 checksum 
computations. A cyclic redundancy check (CRC) is 
an error-detecting code that is usually being used for 
accidental data changes detection. It can be also used 
for intentional data changes detection as well (9).  

CRC is typically implemented using logical shifts 
for polynomial divisions (10). This kind of 
implementation was used for our evaluation of the 
proposed architecture because of its higher 
computation complexity than the implementation 
used originally in (3).  There are also more effective 
approaches for CRC computation such as 
Computation of Cyclic Redundancy Checks via table 
look-up (11).  

CRC16 is easy to implement and can be used 
for changes detection. The same CRC16 algorithm 
was implemented in pure C and in the proposed 
custom virtual machine instruction set. 

 
3.1  CRC16 ALGORITHM DETAILS 

 
There are many CRC specifications and 

implementations. Description of a specific CRC code 
needs a characterization by defining a division 
polynomial. An M-bit long CRC is based 
on a primitive polynomial of degree M, called 
a generator polynomial. For example, CCITT has 
chosen the following polynomial: x16 + x12 + x5 + 1. 
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This polynomial can also be expressed like 
1 0001 0000 0010 0001.  

The CRC computation algorithm for an input 
word I and a given generator polynomial G of degree 
D is as follows: 

First, multiply I by XM. In binary, it results 
in adding M zero bits to I. Second, divide G into IxM. 
Since division is done on binary level, all of the 
subtractions are done as modulo 2. The Modulo 2 
subtraction operation is the same as the logical 
exclusive or (XOR) operation. Third, ignore 
the quotient. Fourth, the remainder is part of CRC. 
Let’s call it C. C will be a polynomial of degree M-1. 
If C is of higher degree, the division process 
has not been finished yet (12). All of these operations 
can be defined using logical shifts and exclusive OR 
logical operations.  

 
3.2 CRC16 CUSTOM ARCHITECTURE 

IMPLEMENTATION 
 

The CRC-16-ANSI specification has been chosen 
to be used for the purpose of this research. This 
implementation is specified by the 0x8005 (x16 + x15 
+ x2 + 1) (1 1000 0000 0000 0101) polynomial.  
Below is presented the CRC16 implementation 
in the proposed custom virtual machine instruction 
set. 
LA R0, 0x2 
LA R1, 0x4 
LA R3, 0x1  
LV R2, R3  
XOR R3,R3,R3 
XOR R4,R4,R4 
XOR R5,R5,R5 
LA R9, 12  
LA R10, 15 
LA R11, 1 
LA R12, 8 
RSHIFT R5,R3,R10 
LSHIFT R3,R3,R11 
LV R15,R0        
RSHIFT R6,R15,R4  
AND R6,R6,R11 
OR R3,R3,R6 
ADD R4,R4,R11 
LA R13, 25 
CMP R4,R12 
JB R13 
LA R4, 0 
ADD R0, R0, R11 
SUBSTRACT R1,R1,R11 
LA R13, 29 
CMP R5,R11 
JB R13 
XOR R3,R3,R2 
CMP R14, R1 
JB R9 
LA R9, 34  
LA R6, 0  

LA R4, 16 
RSHIFT R5, R3, R10 
LSHIFT R3, R3, R11 
LA R13,40 
CMP R5,R11 
JB R13 
XOR R3,R3,R2 
ADD R6,R6,R11 
CMP R6, R4 
JNE R9 
LA R7,0 
LV R6,R14 
LA R8, 0x0001 
LA R9, 47  
AND R10, R6, R3 
LA R13, 52 
CMP R10,R11  
JB R13 
OR R7,R7,R8 
RSHIFT R6,R6,R11 
LSHIFT R8,R8,R11 
CMP R6, R14 
JNE R9 
PRINT R7 
HALT 
 
3.3 COMPILATION DETAILS 
 

Both programs were compiled on Linux, Ubuntu 
16.04 with 4.4 kernel using gcc compiler v7.5.0 (13)  
for Linux operating system. Different optimization 
settings were used for measurements: 

 Default configuration; 
 - O1; 
 - O2; 
 - O3; 
 - Ofast. 

 
Both pure C implementation and custom virtual 

machine-based implementation used bitwise shift-
based implementations and not precalculated table 
implementation. 

Based on the online gcc compiler 
documentation (14), the  influence of used 
optimization flags on compilation process is 
as follows. The -O1 flag turns on optimization during 
compilation process. Compiler tries to  decrease 
the code size and more notably, it tries to decrease 
the execution time. It uses the basic set 
of optimizations but does not use any optimizations 
that would probably take a lot of compilation time. 
The -O2 flag instructs the compiler to optimize even 
more. Using this flag, the gcc compiler performs 
almost all supported optimizations with exception 
of those, which outcome in space-speed 
compromises. The usage of -O3 flag means to turn 
on further optimizations. It uses all optimizations 
specified by -O2 flag and some other ones. 
The largest set of optimizations is applied, when 
the Ofast flag is set. It uses all -O3 optimizations, but 
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also it enables optimizations that are not valid for all 
standard-compliant programs.  

Totally, three sets of measurements were made.  
As an input, different subsets of ROCKOU.txt (15) 
wordlist have been used. The input subsets consist of 
100, 1000, 10 000, 100 000 and 1 000 000 words. 
The measurements were done on Intel Core i7 with 
8 GB of RAM memory.  

For execution time measurements, Time (16) tool 
was used. Its results consist of the elapsed time 
in  the  User mode, Kernel mode and the real elapsed

time. For  the purpose of this paper measurements, 
only real elapsed time was taken into consideration. 

 
4 RESULTS 

 
As it has been mentioned in the previous chapter, 

totally, three distinct sets of measurements 
were taken. In all from three distinct sets 
of measurements, 50 separate measurements were 
done. All chosen inputs were run against whole set 
of generated binaries using entire flags.  
 
 

  Tab. 1 Results of measurements of execution time 

 c c -O1 c -O2 c -O3 c -Ofast vm vm -O1 vm -O2 vm -O3 vm -Ofast 

1000000 32:39.05 32:21.00 32:54.01 32:33.01 32:24.05 33:58.01 32:53.10 32:42.04 32:48.03 32:40.03 

100000 03:15.01 03:18.05 03:17.06 03:14.03 03:14.03 03:21.04 03:17.09 03:16.07 03:16.03 03:15.07 

10000 19.13 18.89 18.55 19.49 20.18 19.51 19.44 19.98 19.86 19.00 

1000 1.81 1.52 1.95 2.00 1.82 2.04 2.00 1.82 2.01 2.00 

100 0.17 0.1 0.09 0.09 0.18 0.19 0.09 0.14 0.17 0.1 

 
 

Table 1 shows dependency of the execution time 
to the number of processed input words. The first 
column describes number of processed input words 
in  distinct measure. Table displays results  
of measurements of execution time in seconds. 
The header consists of all samples which were used 
in tests. Mark c stands for clean C implementation and 
mark vm stands for custom virtual machine 
instruction set based implementation. Mark is then 
followed with used optimization flag used 
in compilation process.  

Figures 1 to 5 shows dependency graphs 
of average execution time of samples in seconds 
for processing different number of input words.  

 
 

 

Fig. 1 Average execution time in seconds of samples  
for processing 100 input words 

Source: authors. 

 

 

 

Fig. 2 Average execution time in seconds of samples  
for processing 1000 input words 

Source: authors. 
 

 

Fig. 3 Average execution time of samples for processing 
10 000 input words 

Source: authors.  
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Fig. 4 Average execution time of samples for processing 
100 000 input words 

Source: authors. 

 
 

 

Fig. 5 Average execution time of samples for processing  
1 000 000 input words 

Source: authors.  
 
 

It can be observed from the figures that, 
in general, there is only minor impact on performance 
between the pure C implementation and the custom 
emulator implementation for the selected algorithm 
and the input set. The maximal measured difference 
between samples without optimizations is only 13 % 
in favor for the pure C implementation. The maximal 
measured difference is 89 % in favor for pure C 
implementation. These results were measured 
between samples using -O3 optimizations flag 
on smallest input set. It is a lot, but it was measured 
on small input set, where operating system itself 
had huge influence on measures. 

On the other hand, it is observable that using 
the smallest data input, sometimes the custom virtual 
machine instruction set based sample executes even 
quicker in some occasions.  

Averagely, the difference was only 7 % in favor 
for the pure C implementation, but if we take 
into consideration only three biggest input datasets, 
difference was in average about 1 %.  

We assume, that such small average difference of 
execution time between raw C implementation and 
custom RISC-based architecture emulator 
implementation is a result of effectively implemented 

shellcode for emulator with many mentioned 
compiler optimizations done by hand. 

 
5 CONCLUSION  
 

The main goal was to evaluate execution time of 
custom virtual machine instruction set emulator 
compared to pure C implementation of CRC16 
algorithm. The research has been motivated by the 
utilization of the custom virtual machines in the area 
of obfuscation techniques for software protection and 
malware detection. 

Measured differences are really small. 
The average difference is only 7 % in favor to pure C 
implementation.   

Algorithm implementations were in both cases 
based on bitwise shifts and not on precalculated 
tables, which is less effective, but leave space 
for more calculations and further optimizations.  

Future measures may be focused on following 
research questions: 

Validation of measures, so the follow-up research 
may be focused on different algorithms 
implementations, in order to minimize complier 
impact on measures.  

Measure the similarity score between different 
compilation flags usage, in order to minimize 
compiler impact.  

To conclude, even though not all measurements 
results looks optimistic at initial view, but founded 
on assumptions that measured execution time 
in measures involving only small number of samples 
was highly influenced by operating itself, this custom 
virtual machine instruction set emulator overcame 
our assumptions, but it needs to be furthermore 
analyzed. Overall result of 7 % of execution time 
increase is inconsistent with (7) where was indicated 
that virtualization-based software will cause timing 
anomalies that  will  be  detected  ”for  free”  
by  timing-based attestation. Since our proposed 
custom instruction set virtual machine meets 
the requirements mentioned in (5) for code 
efficiency, it does not have to be detected “for free” 
as stated above. 
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