
Science & Military 1/2020

5

EVALUATION OF CUSTOM VIRTUAL MACHINE INSTRUCTION
SET EMULATOR

Jozef KOSTELANSKÝ, Ľubomír DEDERA

Abstract: The main goal of the article is to evaluate performance characteristics of a custom virtual machine instruction set
emulator. The instruction set has been designed as part of research aimed at utilization of custom virtual machines in the area
of obfuscation techniques for software protection and malware detection, with the aim to efficiently implement the particular
algorithm (CRC16). In the paper we compare performance characteristics of two implementations of the CRC16 algorithm –
in the emulated custom virtual machine instruction set and the direct C-to-x86-compiled executable. The aim is to show that
the emulation process of such a simple virtual machine has only minor influence on execution time in comparison with the
C-to-x86-compiled code.

Keywords: Instruction set; Virtual machine; Performance; Compilers; Time measurements.

1 INTRODUCTION

Emulators allows to run code written for one
architecture on another architecture. There are many
emulators. For example, QEMU (1), Android
Emulator (2) and many more. Emulation is also
a promising method of software obfuscation (3).
In (4) was custom reconfigurable instruction set
proposed. The main goal of that custom virtual
machine instruction set is to research static properties
of reconfigurable instruction set emulators.
It concludes with presenting findings that, using
presented approach, it is possible to generate binaries
with the same dynamic properties, but with different
static properties. After reviewing static properties
of the proposed emulator, the focus is switched to its
dynamic properties. One of the requirements
on software obfuscators from dynamic point of view
is code efficiency or performance efficiency. It means
that obfuscated code should not run much slower than
the original code (5). Time measurements are as well
used as methods for anomaly detections (6), (7),
(8). The goal of this paper is to evaluate performance
impact of the proposed custom virtual machine
instruction set emulator running on top of the x86
architecture operating system with comparison
towards direct x86 implementation. For this
evaluation, CRC-16 algorithm implementation
is used.

2 VIRTUAL MACHINE INSTRUCTION SET

DESIGN

In (4) a custom virtual machine instruction set
was proposed. Requirements were focused on simple
and extensible instruction set creation. However,
it was insufficient for the CRC16 (9) algorithm
implementation. That is why the whole emulator
has been rewritten specifically for CRC16
implementation with the following changes:

 Registers – The number of general-
purpose registers has been increased
from eight to sixteen registers.

 Instructions – The previously proposed
instruction set lacked instructions that

are necessary for the CRC16
implementation.

Here we sum up the updated RISC-like

architecture emulator attributes:
 Architecture – virtual machine template

design is based on von Neumann
architecture with shared memory
between data and instructions.

 Memory size – virtual machine template
design memory size is 32-bit. It consists
of 16-bit addresses pointing to 16-bit
values.

 Instruction type – virtual machine
template design uses instructions of
fixed length (16 bits per instruction).

 Registers – virtual machine template
design uses 16 registers. Fifteen of them
are general purpose registers.
In addition, there is the instruction
pointer register.

 Flags – virtual machine template design
uses 3 flags. It updates them after every
instruction execution. The flags are –
FLAG_ZERO, FLAG_POSITIVE and
FLAG_NEGATIVE. Their names
describe theirs purpose.

 Instructions – custom virtual machine
instruction set consists just
of instructions necessary to implement
the CRC16 algorithm. Here is a list
of previously implemented instructions
for reference:

 LA is an instruction used for loading 8-
bit value into registers, for example LA
R0, 0x00000001 will load value 1 into
register R0. This instruction is used
for loading smaller constant values or
addresses pointing to bigger values
in memory.

 LV is an instruction used for loading
value pointed by address in one register
into another register, for example LV R0,
R1 will load value from address where is
register R1 pointing into register R0.

Science & Military 1/2020

6

 XOR is an instruction used
for performing logical xor operation
between 2 registers and writing output
to another register; for example, XOR
R0, R1, R2 will do the following
operation: R0 := R1 XOR R2. This
instruction is used in addition to XOR
also for setting the registry values to 0.

 ADD is an instruction used for adding 2
registers and writing output to another
register; for example, ADD R0, R1, R2
will do following operation: R0 := R1 +
R2.

 MOV is an instruction used for copying
a value from one register to another;
for example, MOV R0, R1 will copy
value from register R1 into register R0.

 CMP is an instruction used for
comparing 2 registers; for example,
CMP R0, R1 will compare value
in register R0 with value in register
R1 and based on the result, is will update
flags. If R0 equals to R1
then the instruction will set
the FLAG_ZERO. If R0 is greater than
R1, the instruction will set
the FLAG_POSITIVE and if R0
is smaller than R1,
the FLAG_NEGATIVE is set.

 JNZ is an instruction used
for conditional branching; for example,
JNZ R6 will do conditional jump
to the address in register R6 if
FLAG_ZERO is not set, and otherwise,
it will continue with another instruction.
Together with CMP instruction can
be used for cycle implementation.

 PRINT is an instruction used for printing
the value stored in a register;
for example, PRINT R0 will print
the value in register R0 on the standard
output.

 HALT is an instruction used for halting
the custom virtual machine down.
If the interpreter encounters this
instruction, it will shut down.

Newly added instructions:

 SUB is an instruction used
for subtraction; for example,
SUB R0, R1, R2 will subtract value
in R2 from R1 and write result to R0.

 JNE is an instruction used
for conditional branching; for example,
JNE R0 will do conditional jump
to address stored in register R0 if
FLAG_ZERO is not set, and otherwise,
it will continue with next instruction.

Together with CMP instruction, can be
used for cycle implementation.

 JB is an instruction used for conditional
branching; for example, JB R0 will do
conditional jump to address stored
in register R0 if FLAG_NEGATIVE
is set, and otherwise, it will
continue with next instruction. Together
with CMP instruction, can be used
for cycle implementation.

 AND is an instruction used for
AND logical operation between two
registers; for example, AND R0,
R1, R2 will do following operation
R0 := R1 AND R2.

 OR is an instruction used for OR logical
operation between two registers;
for example, OR R0, R1, R2
will do following operation
R0 := R1 OR R2.

 LSHIFT is an instruction used
for bitwise left shift operation; for
example, LSHIFT R0, R1, R2 will do
following operation R0 := R1 << R2.

 RSHIFT is an instruction used
for bitwise right shift operation;
for example, RSHIFT R0, R1, R2 will do
following operation R0 := R1 >> R2.

3 PROPOSAL OF THE MEASURE

The goal of this paper is to measure execution
time needed to perform CRC16 checksum
computations. A cyclic redundancy check (CRC) is
an error-detecting code that is usually being used for
accidental data changes detection. It can be also used
for intentional data changes detection as well (9).

CRC is typically implemented using logical shifts
for polynomial divisions (10). This kind of
implementation was used for our evaluation of the
proposed architecture because of its higher
computation complexity than the implementation
used originally in (3). There are also more effective
approaches for CRC computation such as
Computation of Cyclic Redundancy Checks via table
look-up (11).

CRC16 is easy to implement and can be used
for changes detection. The same CRC16 algorithm
was implemented in pure C and in the proposed
custom virtual machine instruction set.

3.1 CRC16 ALGORITHM DETAILS

There are many CRC specifications and

implementations. Description of a specific CRC code
needs a characterization by defining a division
polynomial. An M-bit long CRC is based
on a primitive polynomial of degree M, called
a generator polynomial. For example, CCITT has
chosen the following polynomial: x16 + x12 + x5 + 1.

Science & Military 1/2020

7

This polynomial can also be expressed like
1 0001 0000 0010 0001.

The CRC computation algorithm for an input
word I and a given generator polynomial G of degree
D is as follows:

First, multiply I by XM. In binary, it results
in adding M zero bits to I. Second, divide G into IxM.
Since division is done on binary level, all of the
subtractions are done as modulo 2. The Modulo 2
subtraction operation is the same as the logical
exclusive or (XOR) operation. Third, ignore
the quotient. Fourth, the remainder is part of CRC.
Let’s call it C. C will be a polynomial of degree M-1.
If C is of higher degree, the division process
has not been finished yet (12). All of these operations
can be defined using logical shifts and exclusive OR
logical operations.

3.2 CRC16 CUSTOM ARCHITECTURE

IMPLEMENTATION

The CRC-16-ANSI specification has been chosen
to be used for the purpose of this research. This
implementation is specified by the 0x8005 (x16 + x15
+ x2 + 1) (1 1000 0000 0000 0101) polynomial.
Below is presented the CRC16 implementation
in the proposed custom virtual machine instruction
set.
LA R0, 0x2
LA R1, 0x4
LA R3, 0x1
LV R2, R3
XOR R3,R3,R3
XOR R4,R4,R4
XOR R5,R5,R5
LA R9, 12
LA R10, 15
LA R11, 1
LA R12, 8
RSHIFT R5,R3,R10
LSHIFT R3,R3,R11
LV R15,R0
RSHIFT R6,R15,R4
AND R6,R6,R11
OR R3,R3,R6
ADD R4,R4,R11
LA R13, 25
CMP R4,R12
JB R13
LA R4, 0
ADD R0, R0, R11
SUBSTRACT R1,R1,R11
LA R13, 29
CMP R5,R11
JB R13
XOR R3,R3,R2
CMP R14, R1
JB R9
LA R9, 34
LA R6, 0

LA R4, 16
RSHIFT R5, R3, R10
LSHIFT R3, R3, R11
LA R13,40
CMP R5,R11
JB R13
XOR R3,R3,R2
ADD R6,R6,R11
CMP R6, R4
JNE R9
LA R7,0
LV R6,R14
LA R8, 0x0001
LA R9, 47
AND R10, R6, R3
LA R13, 52
CMP R10,R11
JB R13
OR R7,R7,R8
RSHIFT R6,R6,R11
LSHIFT R8,R8,R11
CMP R6, R14
JNE R9
PRINT R7
HALT

3.3 COMPILATION DETAILS

Both programs were compiled on Linux, Ubuntu
16.04 with 4.4 kernel using gcc compiler v7.5.0 (13)
for Linux operating system. Different optimization
settings were used for measurements:

 Default configuration;
 - O1;
 - O2;
 - O3;
 - Ofast.

Both pure C implementation and custom virtual

machine-based implementation used bitwise shift-
based implementations and not precalculated table
implementation.

Based on the online gcc compiler
documentation (14), the influence of used
optimization flags on compilation process is
as follows. The -O1 flag turns on optimization during
compilation process. Compiler tries to decrease
the code size and more notably, it tries to decrease
the execution time. It uses the basic set
of optimizations but does not use any optimizations
that would probably take a lot of compilation time.
The -O2 flag instructs the compiler to optimize even
more. Using this flag, the gcc compiler performs
almost all supported optimizations with exception
of those, which outcome in space-speed
compromises. The usage of -O3 flag means to turn
on further optimizations. It uses all optimizations
specified by -O2 flag and some other ones.
The largest set of optimizations is applied, when
the Ofast flag is set. It uses all -O3 optimizations, but

Science & Military 1/2020

8

also it enables optimizations that are not valid for all
standard-compliant programs.

Totally, three sets of measurements were made.
As an input, different subsets of ROCKOU.txt (15)
wordlist have been used. The input subsets consist of
100, 1000, 10 000, 100 000 and 1 000 000 words.
The measurements were done on Intel Core i7 with
8 GB of RAM memory.

For execution time measurements, Time (16) tool
was used. Its results consist of the elapsed time
in the User mode, Kernel mode and the real elapsed

time. For the purpose of this paper measurements,
only real elapsed time was taken into consideration.

4 RESULTS

As it has been mentioned in the previous chapter,

totally, three distinct sets of measurements
were taken. In all from three distinct sets
of measurements, 50 separate measurements were
done. All chosen inputs were run against whole set
of generated binaries using entire flags.

 Tab. 1 Results of measurements of execution time

 c c -O1 c -O2 c -O3 c -Ofast vm vm -O1 vm -O2 vm -O3 vm -Ofast

1000000 32:39.05 32:21.00 32:54.01 32:33.01 32:24.05 33:58.01 32:53.10 32:42.04 32:48.03 32:40.03

100000 03:15.01 03:18.05 03:17.06 03:14.03 03:14.03 03:21.04 03:17.09 03:16.07 03:16.03 03:15.07

10000 19.13 18.89 18.55 19.49 20.18 19.51 19.44 19.98 19.86 19.00

1000 1.81 1.52 1.95 2.00 1.82 2.04 2.00 1.82 2.01 2.00

100 0.17 0.1 0.09 0.09 0.18 0.19 0.09 0.14 0.17 0.1

Table 1 shows dependency of the execution time
to the number of processed input words. The first
column describes number of processed input words
in distinct measure. Table displays results
of measurements of execution time in seconds.
The header consists of all samples which were used
in tests. Mark c stands for clean C implementation and
mark vm stands for custom virtual machine
instruction set based implementation. Mark is then
followed with used optimization flag used
in compilation process.

Figures 1 to 5 shows dependency graphs
of average execution time of samples in seconds
for processing different number of input words.

Fig. 1 Average execution time in seconds of samples
for processing 100 input words

Source: authors.

Fig. 2 Average execution time in seconds of samples
for processing 1000 input words

Source: authors.

Fig. 3 Average execution time of samples for processing
10 000 input words

Source: authors.

00:00,00

00:00,04

00:00,09

00:00,13

00:00,17

00:00,22

00:00,00

00:00,43

00:00,86

00:01,30

00:01,73

00:02,16

00:17,71

00:18,14

00:18,58

00:19,01

00:19,44

00:19,87

00:20,30

Science & Military 1/2020

9

Fig. 4 Average execution time of samples for processing
100 000 input words

Source: authors.

Fig. 5 Average execution time of samples for processing
1 000 000 input words

Source: authors.

It can be observed from the figures that,
in general, there is only minor impact on performance
between the pure C implementation and the custom
emulator implementation for the selected algorithm
and the input set. The maximal measured difference
between samples without optimizations is only 13 %
in favor for the pure C implementation. The maximal
measured difference is 89 % in favor for pure C
implementation. These results were measured
between samples using -O3 optimizations flag
on smallest input set. It is a lot, but it was measured
on small input set, where operating system itself
had huge influence on measures.

On the other hand, it is observable that using
the smallest data input, sometimes the custom virtual
machine instruction set based sample executes even
quicker in some occasions.

Averagely, the difference was only 7 % in favor
for the pure C implementation, but if we take
into consideration only three biggest input datasets,
difference was in average about 1 %.

We assume, that such small average difference of
execution time between raw C implementation and
custom RISC-based architecture emulator
implementation is a result of effectively implemented

shellcode for emulator with many mentioned
compiler optimizations done by hand.

5 CONCLUSION

The main goal was to evaluate execution time of
custom virtual machine instruction set emulator
compared to pure C implementation of CRC16
algorithm. The research has been motivated by the
utilization of the custom virtual machines in the area
of obfuscation techniques for software protection and
malware detection.

Measured differences are really small.
The average difference is only 7 % in favor to pure C
implementation.

Algorithm implementations were in both cases
based on bitwise shifts and not on precalculated
tables, which is less effective, but leave space
for more calculations and further optimizations.

Future measures may be focused on following
research questions:

Validation of measures, so the follow-up research
may be focused on different algorithms
implementations, in order to minimize complier
impact on measures.

Measure the similarity score between different
compilation flags usage, in order to minimize
compiler impact.

To conclude, even though not all measurements
results looks optimistic at initial view, but founded
on assumptions that measured execution time
in measures involving only small number of samples
was highly influenced by operating itself, this custom
virtual machine instruction set emulator overcame
our assumptions, but it needs to be furthermore
analyzed. Overall result of 7 % of execution time
increase is inconsistent with (7) where was indicated
that virtualization-based software will cause timing
anomalies that will be detected ”for free”
by timing-based attestation. Since our proposed
custom instruction set virtual machine meets
the requirements mentioned in (5) for code
efficiency, it does not have to be detected “for free”
as stated above.

References

[1] QEMU a Fast and Portable Dynamic

Translator. Bellard, Fabrice. s. l. : USENIX
Association, 2005. FREENIX Track: 2005
USENIX Annual Technical Conference. pp. 41-
46.

[2] Run apps on the Android Emulator. Android
Studio. [Online] 12. 27, 2019. Available at:
<https://developer.android.com/studio/run/emu
lator>.

[3] YOU, I., KANGBIN, Y.: Malware Obfuscation
Techniques: A Brief Survey. In: Proceedings -
2010 International Conference on Broadband,

03:10,08

03:11,81

03:13,54

03:15,26

03:16,99

03:18,72

03:20,45

03:22,18

31:23,52
31:40,80
31:58,08
32:15,36
32:32,64
32:49,92
33:07,20
33:24,48
33:41,76
33:59,04
34:16,32

Science & Military 1/2020

10

Wireless Computing Communication and
Applications, BWCCA 2010.

[4] KOSTELANSKÝ, J., DEDERA, L.: Custom
virtual machine implementation and its
influence on executable static properties. In:
2019 Communication and Information
Technologies (KIT). [online] Liptovský
Mikuláš : Akadémia ozbrojených síl generála
M. R. Štefánika, 2019. ISBN 978-80-8040-
575-5.

[5] FANG, H., WU, Y., WANG, S., HUANG, Y.:
Multi-stage Binary Code Obfuscation Using
Improved Virtual Machine. In: Lai X., Zhou J.,
Li H. (eds) Information Security. ISC 2011.
Lecture Notes in Computer Science, vol. 7001.
Springer, Berlin, Heidelberg, 2011.

[6] LU, S., LYSECKY, R. L., ROZENBLIT, J. W.:
Subcomponent timing-based detection of
malware in embedded systems. In: Proceedings
- 35th IEEE International Conference
on Computer Design, ICCD 2017. pp.
17-24. [8119185] Institute of
Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICCD.2017.12

[7] KOVAH, X., KALLENBERG, C.,
WEATHERS, Ch.: New Results for Timing-
Based Attestation. In: IEEE Symposium on
Security and Privacy. 2012. pp. 239-253.

[8] LU, S., SEO, M., LYSECKY, R.: Timing-
based anomaly detection in embedded systems.
In: 20th Asia and South Pacific Design
Automation Conference, ASP-DAC 2015.
pp. 809-814. [7059110] Institute of Electrical
and Electronics Engineers Inc.
https://doi.org/10.1109/ASPDAC.2015.
7059110

[9] PETERSON, W. W., BROWN, D. T.: Cyclic
Codes for Error Detection. Brown. In:
Proceedings of the IRE, Vol. 49, Issue 1, 1961.
pp. 228-235.

[10] A Commonsense Approach to the Theory of
Error-Correcting Codes. s. l. : The MIT Press;
n edition, 1988. 0262010984.

[11] SARWATE, D. V.: Computation of Cyclic
Redundancy Checks via Table Look-Up. New
York : Association for Computing Machinery,
1988. Commun. ACM, Vol. 31, p. 6. 0001-
0782.

[12] Press, William, H., et al. Numerical Recipes in
C. New York : Cambridge University Press,
2002. ISBN 0-521-43108-5.

[13] GRIFFITH, A.: GCC: The Complete Reference.
New York : McGraw-Hill, Inc., 2002. ISBN
978-0-07-222405-4.

[14] GCC online documentation. GCC. [Online]
Free Software Foundation, Inc., 11 28,
2019. Available at: <https://gcc.gnu.org/
onlinedocs/>.

[15] Passwords. Skullsecurity. [Online] 5 18, 2015.
Available at: <http://downloads.skullsecurity.
org/passwords/rockyou.txt.bz2>.

[16] Time(1) - Linux man page. [Online] Available
at: <https://linux.die.net/man/1/time>.

Dipl. Eng. Jozef KOSTELANSKÝ
Armed Forces Academy of General M. R. Štefánik
Department of Informatics
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: jozef.kostelansky@gmail.com

Assoc. Prof. RNDr. Ľubomír DEDERA, PhD.
Armed Forces Academy of General M. R. Štefánik
Department of Informatics
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: lubomir.dedera@aos.sk

Jozef Kostelansky was born in Slovakia. He received
his engineer degree in 2016 in Communication and
Information systems from the Military Academy
in Liptovský Mikuláš with his thesis focused
on Android malware analysis. He is currently the
PhD. student researching hybrid malware analysis
techniques.

Ľubomír Dedera works as an Associate Professor
at the Department of Informatics, Armed Forces
Academy in Liptovský Mikuláš. He graduated
(RNDr.) from the Faculty of Mathematics and
Physics, Comenius University in Bratislava in 1990.
He received a PhD. degree in Artificial Intelligence
from the Military Academy in Liptovský Mikuláš
in 1997. His research interests include computer
languages, computer security and artificial
intelligence.

